INTRODUCTION TO HULL-WHITE MODEL

VLADIMIR PITERBARG

1. Ho-LEE

1.1. Introduction. We denote the driving Brownian motion by W;
and work under the risk-neutral measure Q. As we know from [[.1], any
(one-factor) IIJM model is completely determined by the instantaneous
forward rate volatility function o (¢,7") in the main HJM equation

df t,T)=-2,T)o(t,T)dt +0(t,T) dW,
where we keep the notation from [I.1], in particular

P(LT) = — D),

S(T,T) = 0.

In general, o (t,T) can be as complicated as we want it to be. It can
depend on f, it can be random, etc. But simple models are usually
more robust, and anyway we need to understand them before tackling
more complex ones.

What is the simplest possible HIM model that we can have? Well,
we can set

o(t,T)=0;
then

df (t,7)=0
and

J(,T)=70,T).
There is no randomness and every instantaneous forward rate is con-

stant. We move “along” the initial term structure. This is a pretty
boring term structure model, albeit occasionally useful in testing.

HW Problem 1: Derive the expression for P (¢,7T) in this trivial
model.

Date: January 4th, 2001.
These are lecture notes for Fixed Income II class for Financial Mathematics
program in the University of Chicago.
1



2 VLADIMIR PITERBARG

HW Problem 2: Show that the model df (¢,T) = mdt is not arbitrage-

free for m # 0 by explicitly constructing a zero-cost self-financing
portfolio with a non-negative payoff.

Let us rephrase the question. What is the simplest possible non-
trivial HJM model? We can set

ot,T)=0c

where ¢ is a given constant — forward rate volatility is constant. This
is a valid choice of volatility structure, and we can build a model from
it. This model is in fact called the Ho-T.ee model.

Historical note: While we derive Ho-lLee from the general HJM spec-
ification, historically it happened the other way around. First Ho and
Lee formulated their model as a first NO-ARBITRAGE model, and

then HJM generalized their idea to a wide class of models.

1.2. Imstantaneous forward rates and a short rate. It is trivial
to solve for ¥ from the equation

—G%E(t,T) = o, 0<t<T,
(T,7) =
We have
X(t,T)=—0x(T—-1).
Then the equation for f’s become

df (t,T) = o (T —t) dt + o dW,,
so that

T = f(O,T)+02/t(T—s) ds+0/t dW
= f(0,T)+o” (;t —1%/2) + JWt.O
Recall our definition of the short rate:
r(t)=f(t1t).
Substituting T = ¢ in the expression for f (¢,7T) above we get
r(t) = [ftt)=[f(0,t)+0” (tt—17/2) + oW,

242

t
= f(O,t)—l—JT—I—JWt.

It is usually very convenient to separate the initial term structure
from the dynamic part. We can do it very easily in our case. Define
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(the dynamic part)

o2

aT(t):T—I—O'Wt

and call it a short-rate state. (note that the short rate state does
not depend on the initial term structure, and x (0) = 0. We can think
of z (t) as a deviation from the initial term structure). Then

r(t)=f00,t)+z(t).

We can also express the instantaneous forward rates as a function of
the short rate state

f(T)

o2

f0,T)+ 0% (Tt —17/2) + <a; (t) — T)
= [0, T)+0*t(T—1t)+z(t).

The dynamics of the term structure is completely determined by the

processes for all its instantaneous forward rates, because everything can
be computed using them (spot rates, bonds, forward bonds). Note that
all forward rates depend on a single source of noise, z (t). Moreover,
x (t) is a Markov process, i.e. if we know the present, the location of
x (t), the future is independent of the past. This is a very powerful
property that allows us to build recombining trees (more on that
later).

To emphasize, if we know x () at time ¢ we know the whole term
structure {f (¢,7)};_,. We have reduced the evolution of the whole
term structure (potentially infinite-dimensional) to the movement of a
single stochastic random variable z (t), which in addition follows a very
simple process.

1.3. Bond prices. Usually it is very useful to have simple expressions
for bond prices at future times P (¢,7’) as functions of some (universal)
variables. Seeing that we were successful in expressing all forward rates
as functions of a single variable z (1) we can hope to do the same thing

for bonds. We have

PULT) = exp <—/tTf(t,S) dS>
~ exp <—/tT [7(0,5) + 0% (5 — ) + 2 (1)] dS>

= exp <—/tTf(0,S) dS> X exp </tT02t(S—t) dS>

xexp(—(T'—t)z (1)) .
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The first exponent is just the forward value of the bond at time 0

(known from the initial term structure) P (0,t,7) = ];((Odf))- The second

exponent is a deterministic drift and can be computed easily; we denote

it A(t,T),

A(t,T) = exp </tT02t(S—t) dS>

— exp <%2t (T — t)2> :

And in the second exponent we define
b(t, T)=T—1t
and observe that it is indeed a function of z (¢). So we have
P(t,T)=P(0,t,T) A(t, T)e "®

and we have succeeded in expressing all bond prices as functions of the
same state variable z (1) .

2. HULL-WHITE

2.1. Formulas. The volatility specification from the previous section
can be generalized somewhat, with no additional complications, to

o(t,T)=ce @D

where the coeflicient a > 0 is called the mean reversion coefficient (for
reasons explained later). This is the so-called Hull-White model. The
formulas for the Hull-White model are as follows.

Volatility functions

1— efa(Tft)

I

b(t, T) = -

X (s, T) = —oxb(t,T).
Short rate and instantaneous forward rates
r(t) = f(0,0)+x(t),

2

¢
z(t) = %b(o,t)Q—l—J/O e WD,

2

f@&,T) = f(0,7)+ (bQ(o,T)—bQ(t,T)Ha/Ote“(“)dWS,

F@,T) = f0,7)+— (6*(0,7) = b* (¢, 1) — e T2 (0,1)) + e T Dz (1).

SRR
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Bond prices

P, T) = P(0,t,T)x A(t,T)e 2O,
0—2 1 — 672“

A, T) = exp <—22a62(t,T)>.

HW Problem 3: Prove these formulas by repeating the arguments
we made for the Ho-Lee model.

2.2. Distributional properties. The random variable z () is Gauss-
ian. Its variance is given by
) 1 — 672at

2a

The bond is log-normal, i.e. the logarithm of the bond is Gaussian.
Its variance

Var(z (1)) =0

1 — 672at

Var (log P (¢, T)) = o (t,T) o
a

HW Problem 4: Prove these formulas.

2.3. Markovian property. As we can see all market quantities (for-
ward rates, bond prices) can be expressed in terms of the short rate
state x (t), just like in the Ho-Lee model. But is z (1) process Markov?
From the formula

t
x(t)=..+ U/ e U=y,
0

it appears that z (1) depends on the whole history of W between 0 and
t.

Nevertheless, let us compute dz (t). If the drift and diffusion coef-
ficients in the resulting equation depend on quantities at time ¢ only

then x (t) is Markov. We have

d t
dr(t) = o?b(0,1) %b(o,t) dt + od <e“t/ e“SdW5>
0

¢
= o’ “'b(0,t) dt — ace ™ </ e“SdW5> dt + oe” e dW;
0
o2
= 0% “b(0,t) dt +a <?62 0,t) —z (t)> dt + o dWs.

After simplifications

(2.1) dx (1) = (0(t) —az (t)) dt + o dW,
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where
2 1 — 672at
0(t) = o’e “b(0,t T 20 4) =022
(6)= 0% 50,0 +aTH (0,0) = o' —

a deterministic function.
We can see from the equation (2.1) that z () is indeed Markov.

2.4. Mean reversion. The equation (2.1) makes clear why a is called

the mean reversion coefficient. It is proportional to the force with

which z (¢) is pulled to the “long-term average” 0 (t) (note that 0 (t) is

pretty small so we can think of x (¢) as reverting to 0. Recall also the

interpretation of z (t) as deviation from today’s term structure).
Without the stochastic part, the equation

dx (t) = —ax (t) dt
has solutions
z(t)=2(0)e *,

Le. x (t) experiences exponential “pull to zero” (see Figure 1). When
the stochastic term is present, random shocks can move z (t) around
but it is still pulled to 0 (or, more accurately, to 6 (t)) — see Figure 2.

2.5. Loadings. In the Hull-White model

r(t) = ..+z(t),
f,T) = . 4+e T ().

The process z (t) represents a random shock. Recall the statistical
model — it can be interpreted as a factor. Then the responses of various
rates f (t,T) to this shock are given by the function e=*7=%. This
response can be interpreted, in the framework of the statistical model,
as a loading. Note that the longer the time to expiry T'—1t, the smaller
the response to the shock.

For spot rates the same qualitative behavior holds:

b(t,T)
t,T) = logP (t,T)=..——x(t
R(T) = o log P (1 T) = .l (1),
so the loading for the spot rates is given by the function
b(t,T)
T—t

(compare to the statistical model). For longer T — ¢, the function %

is smaller, so again, we see that longer-tenor rates have lower response.
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Lower response translates into lower volatility:

b(t,T)
LR (L. T —1 7
vol R (t,T) T :
Same holds for forward rates
1
FMT) = T_M(logP(t,T)—logP(t,M))
1
= .. bt TY—b(t, M t
b (17— (1, M) 2 (1)

1 efa(Mft) _ efa(Tft)
= ..+ < > x (1)

T—M a
b(M, T
= ...—I—ﬁe“(]wt)aﬁ (1).

The longer the tenor T'— M, the lower the volatility (everything else
being equal).

The results are presented for instantaneous volatility but similar re-
sults hold for term volatilities.

2.6. On the importance of mean reversion. This topic is discussed
at length in Rebonato ([RB2]). Models that exhibit mean reversion
are generally preferred to those that do not. There are various reasons
for that. Some people believe that it is important to recapture this
property in the model because the rates in the real world do indeed
exhibit mean reversion (see Figure 2). However, this is not a very good
argument, because mean reversion in such interpretation is a condition
on a drift. However, as we know, the drift gets all changed when we
switch to the risk-neutral world, so real-world drift is largely irrelevant
to the prices of traded instruments.

However, as pointed by Rebonato, the drift of the short rate (non-
traded asset) affects the volatility of the traded assets, i.e. bonds. It
is clear from the formula we derived:

(2.2) Vol R (1, T) <1;(€T7_(2;)>

Therefore, having mean reversion allows us to control how volatilities
of different bonds relate to each other.

One of the shortcomings of Ho-Lee model is that, given the same
short-rate volatility, the volatilities of spot rates are all the same (just
plug in @ = 0 in the formula (2.2)). However, longer tenor rates nor-
mally have implied volatilities that are lower than shorter-tenor rates,
see Figure 3. Fxamining (2.2) and Figure 4 we see that this can be
achieved by cranking the mean reversion up. Thus we need more mean
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reversion to make the volatilities of the rates with longer tenors lower
than those of shorter tenors.

As a matter of fact “mean reversion” is sometimes understood in
exactly this, more broad, sense. The model does not need to have
an equation that looks like (2.1) to be “mean reverting”. But it does
need to have downward sloping loadings. “Mean reversion” than can
be understood as the speed of decay in the loading(s).

3. CALIBRATION

The usage of any model, and the Hull-White model is no exception,
follows the same framework. We calibrate the model to the prices of
actively-traded instruments (imply the parameters of the model from
the prices of market instruments) and compute prices of the instru-
ments that are not actively traded. By far, the only liquid instruments
we can use in calibration are caps and Furopean swaptions. They are
usually well represented as a grid (appropriately known as a swaption
grid) with swaption’s expiry running down and the swap tenor running
across. The grid usually contains 1004 swaptions and caps.

In the discussion that follow it is useful to keep in mind the lecture on
building smooth term curves. The goal of calibration is the same as the
goal of building a term curve — we would like to find internal parameters
of the model (forward rates in the case of the curve building) that match
externally given market prices.

It is a goal of a calibration of an interest-rate model to match as
many swaptions in the grid as possible. The Ho-L.ee model has only
one parameter, o, and therefore can only match a single swaption.
Hull-White adds another parameter, a, so theoretically we can match
two swaptions (However, a more useful way to “spend” the parameter
a is to get a general shape of a loading right.)

Many instruments, with a notable presence of Bermuda swaptions,
require simultaneous calibration to many Furopean swaptions. The
straight Hull-White model does not allow us that flexibility. How-
ever, the Hull-White can be extended even further to introduce time-
dependent volatility ¢ (1) and even time-dependent reversion a (1).

Formally, the extended Hull-White model is characterized by the
volatility structures of forward rates of the form

o (t) T) =g (t) e ftT G(U) du‘

Most of the formulas we have derived can be generalized in the ex-
tended Hull-White model. While we lose nice closed-form solutions,
and (more importantly) time-homogeneity, we keep important features
of the model — it is still a one-dimensional Gaussian Markov model.
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In this model we treat o (¢) and a (¢) as unknown parameters to be
found during calibration. As previously discussed, adding more para-
meters to any model allows for more flexibility so that we can fit more
instruments, but may result in an overfitted model if we are not care-
ful. The symptoms of an overfitted model are parameters that defy
intuition, are time-inhomogeneous and unstable in day-to-day recali-
brations. It is very easy to overfit the extended Hull-White
model.

While we can stabilize the calibration of the extended Hull-White
model using numerical tricks (including smoothing objectives and the
like), we should realize that the goal of fitting the whole swaption grid
(or a significant portion of it) is too ambitious for any one-factor model,
Hull-White included. One-factors-ness is just too-strong a handicap to
overcome. We shall examine this topic in detail later in the class.
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Figure 1
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4. APPENDIX

Deterministic mean reversion

—~V
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Figure 2

Sample Paths with Different Mean Reversions
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Figure 3
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