FORWARD MEASURES AND CHANGES OF
NUMERAIRE

VLADIMIR PITERBARG

1. INTRODUCTION

In the second lecture of the series (see [L1]) we go deeper into the
realm of interest-rate models. Our goal is simple: derive useful valua-
tion formulas for derivative securities.

2. SETUP

Recall the notations of the previous lecture. We assume that a prob-
ability space (Q, F) is given, equipped with a risk-neutral measure Q.
The real-world measure will never be mentioned in this lecture.

We also fix a Brownian motion W; (note that we remove “tilde”
from the notation of previous lecture for clarity), and assume that the
filtration {F;, 0 <1 < oo} is Brownian. We present all the results in
one-factor framework, which is only done for brevity. We denote bonds
by P (t,T) and assume them to follow the equations

dP (t,T) =7 (t) P (t,T) dt + P (t,T) S (¢, T) dW,

with the appropriate technical conditions imposed on bond volatility
processes X (t,T'). We denote by B; a money-market account; it follows
the law

dBt =T (t) Bt dt.
A security that pays X at time T’ has value at time ¢ that is equal to
(2.1) ™ (X) = BE (B'X|F).

A number of different measures will be introduced in the lecture.
Each one will be denoted by letter Q with some sort of decoration
(for example Q) The expected value operator that corresponds to a
measure like that will be denoted by letter E with the same decoration
(for example for Q it would be E)
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3. MOTIVATIONAL EXAMPLE

Probably the simplest possible derivative security we can think of is
an option on a discount bond (remember that a caplet is actually an
option on a discount bond, so this is a real-world example). Suppose
we have a call option that expiries at time 7" on a bond P (-, M), where
0 <T < M. Suppose the strike is K. The payoff of the option is

C=(P(T,M)—K)",

paid at time T’ Clearly C is Fp-measurable (because C' depends only
on the value of the bond at time 7). Then by (2.1),

(3.1) T (C) = E(B;'C)
= E(B;'(P(T'M)-K)").

If we actually needed to compute this value, we would have to know
the joint distribution (at time ¢ = 0) of two random variables, By, D and
P (T, M). We would then have to do fwo-dimensional integration of
the payoff with respect to their joint density function. Seems like a lot
of trouble for a simple option on a discount bond. Can we simplify this
formula somehow? Recall that in Black’s model we would just have
the expression (for example, assuming log-normal distribution for the

bond)
(3.2) Blacko (C) = P (0, T)E(P (T, M) — K)*

(we were careful to use a different letter E to denote different assump-
tions of Black’s model). The difference between models (3.1) and (3.2)
is that in the latter, we only have to specify a one-dimensional distri-
bution (of P (T, M)) and perform a one-dimensional integration with
respect to bond’s density. Further comparison of the two formulas re-
veals that in Black’s formula we are able to “pull” B;l from under the
expectation sign and replace it with a (non-random) quantity P (0, 7).
Can this action be somehow justified?

4. MEASURE CHANGE

4.1. 1D example. We have performed a change of measure when we
switched from real-world measure P (oops! I said earlier that real world
measure will never be mentioned in this lecture.. But this is the only
time, I promise) to a risk-neutral one Q in the previous lecture. The
utility of that little trick has not been completely exhausted, however.
Let us look at a simple measure change example.

Let X be a random variable with density f (x). Let ¢ (z) be a real-
valued function. What is the expected value of the random variable
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¢ (X)? Well, this is easy,

B¢ (X) = / (@) f (2) da

Let g () be another function such that it is always positive and inte-
grates to 1.0, so that

g (x) >0 for all z,

/Zg(a:)da:zl.

Then we can do the following stupid little transformation,
4y B = [ s@f@d

_ / T (@) f (@) (g (x) Jg (2) de

- [ ow

g((gg (x) dx.

Define

Then we see that
Bro(X) = [ w(@)g() da

which looks like the expected value of ¢ (X) under the measure in
which random variable X has density g (-),

(4.2) E;¢(X) = Eg(X)

The term % represents a density of measure E; with respect to mea-
sure E,, often called a Radon-Nikodim derivative.

It is completely not clear that simple rearranging of terms as in (4.1),
(4.2) has any value whatsoever. It probably does not in the example
above. But the example demonstrates a very deep point. If we read
equation (4.2) from “right” to “left”, then we see that we can simplify
the expression under the expectation sign by an appropriate measure
change.
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4.2. Static theory. Given measure Q on the probability space (2, F)
and a random variable 7 such that
Z >0 Q-as.,
EZ =1,

we can define another measure Q on the same probability space by
(4.3) Q(A) = E(Zx 1)
- [ 2@ Quw
A

(here A € F and 14 is an indicator of an event A). First question is

of course whether Q is a probability measure at all.

HW Problem 1: Prove that it is! At least check the following
conditions (here ) is the null event)

e Q) =0Q()=1

o Forany A€ F, Q(4) > 0; B B

e If {Aand B} = 0 then Q(Aor B) = Q(A4) + Q(B), for
events A, B € F.

Random variable Z plays the role of a density (Radon-Nikodim de-
rivative) of measure Q with respect to measure Q. This fact is usually
formally described as

dQ _
dQ
The relation (4.3) can also be written for expected values as

(4.5) e - B(E2)
_ /Qam%(w)mdw),

here £ is a random variable.

(4.4) 7.

4.3. Dynamic theory. Conditional expectations play a very impor-
tant role in stochastic calculus in general and financial math in par-
ticular. We would like the change of measure to “respect” conditional
expectations. We would like to make sure that something akin to (4.5)
holds not only for unconditional but for conditional expected values as
well.

For general 7, measure change as defined in the previous section
cannot be extended on conditional expectations. To remedy that we
must further restrict the class of measure-change densities allowed.
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Let {Z:},”, be a positive martingale with initial value 1, so that

Zy >0 Q-as.,
E(Z| Fs) =Z;, t>s,
Zo = 1.
Then for any T', T' > 0,
EZr=1.

We therefore can define a measure Qp on sigma-algebra Fp by the
standard formula

(4.6) Qr(A)2E (Zrx 1), A€ Fr.
This is conveniently written as (compare to (4.4))
dQ
4. —| = Zr.
(4.7 o -a
Fr

HW Problem 2: Recall that 7, C Fr fort < T. If A € F; then

A € Fr as well, and we have two probabilities defined for A by
using (4.6),

Qi (4) =E (Z % 1)
and
Qr(4) =E (Zr x L)
We must, of course, have that (consistency condition)
Q:(A)=Qr(A) for AcF, 0<t<T.
Prove it.

Having defined measure Q by (4.6), we need to obtain the change-of-
measure (Bayes) formula for conditional expectations, which now has
the following form:

Theorem 4.1 (Bayes’ Rule). If0 <t <T and¢ is an Fr-measurable
random variable satisfying Er €] < 0o, then

(4.8) B (¢ 7) = 5B (%] 7).

HW Problem 3: Prove the theorem. Hint: Recall the definition

of a conditional expected value E (¢| ;) and show that the ex-
pression on the right-hand side of (4.8) satisfies it.
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5. FORWARD MEASURE

5.1. Fishing expedition. Having forayed this far into heavy theory,
what use can we make of it7 Recall our basic valuation equation

(5.1) T (X) = BE (B;'X| )

for Fr-measurable payoffs X and our desire to “take out” Br' from
under the expected value operator.

Comparing the right-hand-sides of (5.1) and (4.8) we see undeniable
similarities. We can identify X with & (both are Fr-measurable). We
would like to identify B,' with Z; but here is a snag; {B{l} is NOT
a martingale under Q. Measure changes only work with martingales.

There is a neat trick that allows us to work around that. Recall from
[L.1] that the discounted bond value

P(t,T)
Z(t,T)= :
( 2 ) Bt
1s a Q-martingale. Then
P(t,T
Bt = ( : )7
Z(t,T)
pP(rT
BT — ( 2 )
Z(T,T)
B 1
- Z2(T,T)

B.' = Z(T,T).

We can rewrite (5.1) as

Note that the term

E(Z(TT) - X|F)
Z(t,T)

is exactly the same as the right-hand side of (4.8) if we identify 7 (¢, T) ~
Zy, X ~ & Note that Z (t,T) > 0 as required by the measure change
theory.

There is very minor problem still, since in general 7 (0,7 is not
equal to 1. We can fix that my simple scaling.
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5.2. Definition and first reaction. Previous section gave us a moti-
vation for doing the measure change. Here we give a formal definition.
Measure Q7 (with expected value operator ET) is called T-forward
measure if it is defined by
dQt
dQ |, 7Z(0,T)
where Z (t,T) is the discounted bond value process and Q is a risk-
neutral measure.
The definition is valid since the process
AR
Z(0,T)

t=0

Z(t,T)

is a positive normalized martingale.

Theorem 5.1 (Forward Measure Pricing Formula). If X is a payoff
that 1s Fr-measurable, then

(X)) =Pt TYE" (X|F),

where QT is T-forward measure as defined above, and ET is the expected
value operator with respect to that measure.

HW Problem 4: Prove the theorem. Hint: Apply Bayes” Rule.

The theorem shows that we can achieve our main goal of “decou-
pling” the money market By and payoff X in (2.1), at the expense
of using a measure different from risk-neutral. This is usually a small
price to pay.

It is clear from the definition that measure QT depends on a particu-
lar time T'. So in effect we have a whole collection of forward measures
{QT};O:O indexed by time T'. Successful application of forward measure
critically depends on the identification of the right time T. Usually T
is taken to be the expiry time of an option, so that the payoff is mea-
surable with respect to Fr.

5.3. Example revisited. With the help of forward measure, we can
rewrite (3.1) as

(5.2 70 (C) = E (B (P(T,M) - K)')
= P(0,T)E" ((P(T.M) - K)")
which is exactly Black’s formula (3.2). Black’s model is not that stupid
after all!
We will show later in this course that Black’s formula, as applied to

caps, swaptions and other instruments, can in fact be rigorously justi-
fied in HIM framework by the appropriate change of measure. These
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results provide a theoretical foundation for now-fashionable “market
models” (of which BGM is one example).

6. PROPERTIES OF FORWARD MEASURE

Lemma 6.1. Let F'(t,T, M) be the forward price of M-maturity bond
with settlement at time 'l’, so that
P(t,M)
F,T,M)= """~
(&, M) P,T)
Then
F T, M) = BT (P (T, M)| 7).
Proof. (Mirrors closely the solution of the first problem in the last
homework). By definition of a forward price, F (¢, T, M) is an F;-

measurable random variable such that the value of a contingent claim
with payofl (at time T)

X=P(T,M)—F(,T,M)
at time ¢ 1s 0,
O=m (P(T,M)—F(,T,M)).
By Forward Measure Pricing Formula
7 (P (T, M) —F(t,T,M)) =P (t,TYE" (X|F),
so that
0=P(@, T)E"(P(T,M)—F(t,T,M)|F).
The random variable F'(¢,T, M) is Fi-measurable so
E" (F @, T,M)|F)=F(7T,M).
Therefore,
0=E"(P(T,M)|F)—F (T M),
and
F,T,M)=E"(P(T,M)|F).
Lemma 6.2. The process
{F({t, T,M), te]|0,T]}
is a martingale under T-forward measure Q7.

Proof. Immediately follows from the previous lemma and the tower rule
for conditional expected values.
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Lemma 6.3. Let A; be the price at time t of a traded asset, so that
{B,'A, t>0}

is a martingale under risk-neutral measure Q. Let Fs (,T) be its for-
ward price at t for settlement at'T'. We know from homework that

A
P(t,T)

Fa(t,T) =

Then

e the forward price can also be computed as
Fi(t,T)=E" (Ar| F);
e the process of forward price of A,
{Fa(t,T), t>0}
is a martingale under T -forward measure QT .

HW Problem 5: Prove the lemma.

These results explain why Q7 is called “T-forward measure”. It
is identified by the fact that forward prices (settled at time T') of all
traded instruments are martingales with respect to it. In fact, this
property identifies the measure uniquely.

7. FORWARD MEASURE IN (GAUSSIAN HJM

7.1. Gaussian HIM. A Gaussian IIJM model is an HLJM model (see
[L.1]) where forward rate volatilities o (¢, T') are deterministic functions.
For example, Ho-Lee, Hull-White and Yuri’s model (after some modi-
fications) are Gaussian HHJM’s. This is a widely used subclass of IIJM
models, appreciated mostly for extensive analytical tractability, a con-
sequence of the fact that all forward rates are distributed normally, and
all bonds are distributed log-normally (check the formulas in [L.1] to
convince yourself that this is indeed the case).

Forward measures are especially easy to characterize in (Gaussian
HJM models. We will deal with one-factor Gaussian HJM models for
brevity, but the procedure is extendable. We shall start with the fol-
lowing definitions (under risk-neutral measure Q),

df (1,T) = —ST)o(t,T)dt+o(t,T) dW,,
AP (t,T) = r(t)P(t,T) dt+ P (t,T)S(t,T) dW,,
where o (¢,T), % (¢, T) are deterministic functions of their two variables
(and of course

o(s,T) = —8%2 (s,T)
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as in the first lecture>.

7.2. Forward measure derivation. We have mentioned in the pre-
vious sections that T-forward measure is uniquely defined by the fact
that all T-forward prices are martingales under it. Consider a bond
that expiries at time M. Then its evolution is governed by the equa-
tion

dP (t, M) =r ()P, M) dt+ P (t, M)X(t, M) dW,.
From last homework we know that

(7.1)  dF(,T,M)=F@,T,M)[Z*tT)-S@T)S (¢, M)] dt
+ F(t, T, M) [S(t, M) =% (t,7T)] dW,.

This equation holds under risk-neutral measure Q. We would like
to change the measure so that F'(¢,T, M) becomes a martingale. By
Girsanov’s theorem, measure changes in our setting are equivalent to
adding (or subtracting) a drift {from the Brownian motion. We want
to change the drift of W in (7.1) so that the “dt” part of the equation
(7.1) for F'(¢t,T, M) disappears.

The drift change must not of course depend on M because the same
drift change should work for all forward processes. It can, however,
depend on T'. We can rearrange (7.1) so that

dF (¢, T, M) = F (t,T, M) [S(t, M) = S (t,T)] (= (¢, T) dt + dW,).

This immediately yields the required measure change. We have proven
the following theorem.

Theorem 7.1 (Forward measure in Gaussian HIM). We have that

o The T-forward measure QT is (uniquely) identified by the condi-
tion that

dWl & =% (t,T) dt + dW,

is a (driftless) Brownian motion under Q7.
o The T-forward bond price evolution is given by

dF (¢, T, M) = F(t,T, M)[S(t, M) — = (¢,T)] dW/

under QT In particular, it is a positive martingale.
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o Under QT the forward bond price F (t,T, M) has a log-normal
distribution, so that

F (T, M)

F 0,7, M)

F(t,T, M)

F (0,7, M)

% :/0 (S (s, M) — £ (s,T))? ds.

Evolution of other quantities of interest under Q? can easily be de-
duced from their evolutions under Q by replacing dW with dW7 +
Y (+,T). Here is an example.

log 1s Gaussian;

F(t,T, M)

E”1 LALLM
o8 F (0,7, M)’

1
=— §Var log

Var log

Corollary 7.2. A bond with maturity S follows the equation

dP (t,8) = (r(t) + X (¢, T) (¢, 9)) P (t,9) dt + P (t,S) X (t, ) dW/,
and an instantaneous forward rate with maturity S follows the equation
df (t,S) = (S (t,T) — % (t,8)) o (t,9) dt + o (t,S) dW],
under T-forward measure QT , where as before
o(t,T)= —8%2 t,T).
7.3. The Hull-White model. The Hull-White (and its particular

case, Ho-Lee) model is a Gaussian ILJM model. Therefore, these for-
mulas should apply to it. For the Hull-White model

7.3.1. Zero-coupon bond option. A zero-coupon bond option with ex-
piry T’ and strike K on a bond maturingat M, M > T', is an instrument
with a payoff at T" given by

(P(T,M)—K)".
Its price at time 0 is given by (recall (5.2))
T (C) = PO,T)ET ((P(I,M)-K)")
= PODE" ((F(I,T,M)—K)").
The process {F' (¢, T, M), 0<t<T}isa martingale. Moreover (re-
call the lecture on the Hull-White model) F' (T,T, M) is lognormal with

the variance

1 — 672aT

Varlog F' (T, T, M) = o*b> (M — T) 5
a
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Note that the volatility is the same irrespective of what measure we
compute it under, either the risk neutral or forward (change of measure
only affects the drift). Denote

1 _ ¢ 2T 1/2
op = (Varlog F (T, T, M))"/* = ob (M — T) <27> .
a
Then the combination of the martingale property and lognormality
allows us to write

F(T,T,M)=F(0,T,M)exp (05X —0%/2),

where X is a standard Gaussian randopm variable (mean zero, standard
deviation 1). So the value of the bond option

o0

+ 1 2
e 72
27_[_6 <

70 (C) :P(O,T)/

— 00

(F (0,7, M) eor=—ob/2 — K)

Can be computed just like in the Black’s model,
T (C) = PO,T)(F (O, T,M)N(h)— KN (h—o0p)),
1 F (0,7, M) n ap

h = —1 .
O'pog K 2

7.3.2. Short-rate state under forward measure.
HW Problem 6: Prove that under the T-forward measure

0_2

t
z(t) = ) <b2 (0,1) — eUT—1)p2 (0,7) + e(T—t)p2 (taT)> + 0/0 e Ut=9) dWST.

(Hint: Use the formula for z () under the risk-neutral measure from
the Hull-White lecture, and then replace dW with dW7).
Note that (substitute t = T)

T
z(T) = U/ e D) gl
0

2

T
() = =(t)+ % (0% (0,7) — e =902 (0,¢) — b (¢, T)) +g/ e UT=9) g7,
t

8. NUMERAIRES

8.1. A general numeraire. The risk-neutral measure is character-
ized by the fact that the price of any traded asset divided by money-
market account is a martingale under it. Likewise, the T-forward mea-
sure is characterized by the fact that the price of any traded asset
divided by bond P (-,T) is a martingale under it. The “things” that
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we divide traded assets by (or discount them with) are commonly re-
ferred to as “numeraires”. The choice of numeraire is not limited to
the money-market account or discount bonds. Any traded asset with
always-positive value can be used as a numeraire.

Let N, be a traded asset such that N, > 0 for all £, Q-almost surely.
Then

N
B,

is a martingale under Q (see [L1]). Therefore, we can construct a
measure (see previous sections) QV that corresponds to numeraire N
in the following way (also recall Principle of Numeraire Invariance from

Lecture 2 in [SC]).

Theorem 8.1 (General Change of Numeraire). There exists a measure
QY, absolutely continuous with respect to Q, such that

e For any traded asset A, any t,T, 1t < T,
A = NEV (N ' Ag| 7)) 5
o The value of Ay “discounted by” Ny,
Ay
Ny

18 a martingale under QN,
Proof. Take the measure QN defined by its Radon-Nikodim derivative
Q™
dQ
Then apply Bayes’ Rule, so that

_ NJBi
No/Bo’

Tt

~ -~ N/BtA _ NT/BT -
NEYN (N1A | F) = B-Y2tEN | Bt A
t < T T‘ t) tNO/BO T NO/BO T

= BE (B;'Ar| F)
- At'

.

First assertion is proven. The second one follows immediately because
we have just proven that
%)

for all t, T, t <T (which is exactly the martingale condition).

A 10 Ar
N Nr
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Interest-rate models have traditionally been constructed in the risk-
neutral measure. But the last theorem shows that there is nothing
unique about the money-market account B;, and we can use almost
any traded instrument to “discount” other instruments. An arbitrage-
free model can be constructed using any numeraire. If a model is
arbitrage-free in one measure, it is arbilrage-free in all measures.

8.2. Example of a useful numeraire. Suppose we have a tenor
structure

0 = tg <11 < -+ <1k,

Ti = t;i =11,
and a (forward-starting) payers swap with notional 1 and fixed rate
C. Suppose we have an option on that swap (payers swaption) that

expiries at time ¢;. In an HJM model, the value of the swaption is
given by

K

(81) V;=BE | B, ((1 — P(ty,tx)) — CZP(tl,ti)n) Fi

=2

Let us use the (normalized) value of the fixed leg as a numeraire,

K
Nt = Z P (t,t,) Ti.
=2

This is definitely a traded asset for 0 < ¢ < #; since it is just a linear
combination of bonds. Using General Change of Numeraire Theorem,
we have from (8.1) that

K

+
V, = NEV [N, ((1—P(t1,tK))—CZP(tl,ti)TZ) Fi

=2

- NtEN

(=Pt t) = CXE, Pt |,
Sy Pt t) s t

_ NtEN<< L= Pl b) —G) ]-})

Sy Pty t) T
EY ((F, - O)Y|\R),

I
5
=

z

(El - C)Jr‘ ft)
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where I} is a swap break-even rate,
Y P (tt) T

Note how similar this formula is to Black’s formula! If we can find a
model such that the swap rate F; follows geometric Brownian motion

t

under QN , we would have a model in which this particular swaption is
priced using industry-standard Black’s model.

We will have more to say about this type of models later in the
course.

9. CONCLUSIONS

A risk-neutral measure is characterized by money-market account
being its numeraire. Almost any traded instrument can be used as a
numeraire however, giving a choice of measures to use in computing
values of other instruments. Valuation of many instruments can be
significantly simplified by the appropriate choice of a numeraire. Of
special importance are measures that correspond to using bonds as nu-
meraires. These measures are called “forward measures”. They can be
conveniently characterized in the framework of Gaussian HJM models.
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