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THE PROBLEM

Exact conditional inference

• tests, particularly goodness-of-fit (GOF) tests

• residual analysis

• confidence intervals

for binomial & multinomial logistic regression models
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BINOMIAL LOGISTIC REGRESSION

Yi ∼ binomial(mi, πi) i = 1, . . . , n

Compare

M0 : logit(π) = Xβ

with

M1 : logit(π) = Xβ + Zγ

M1 is saturated (GOF test) if rank(X,Z) = n
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EXACT CONDITIONAL INFERENCE FOR γ

Based on the distribution of (or some 1-dim function of)

ZTy|XTy = XTyobs

a margin of

y|XTy = XTyobs

f (successes | sufficient statistics for β)
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Conditional distribution of the vector of responses y,

givenXTy, the vector of sufficient statistics for β, is

f(y|XTy=XTyobs;γ) ∝ exp(γTZTy)
n∏
i=1

 mi

yi


Inference by

• enumeration

• (Markov Chain) Monte Carlo sampling

followed by marginalization
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CONDITIONAL DISTRIBUTION FOR INFERENCE

• uniform when mi = 1 for all i

• GOF test for pure binary data is not sensible

• degenerate for continuous covariates, since only yobs
satisfies the conditioning constraints

• not usually degenerate when covariate values are

integer or evenly spaced
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METROPOLIS-HASTINGS SAMPLING

1. Given current value y, generate a new value y′ from

some probability distribution q(y,y′)

2. Accept y′ as the next realization of the chain with

probability a(y,y′), where

a(y,y′) = min

f(y′)q(y′,y)

f(y)q(y,y′)
, 1


otherwise, retain y

Provided q is chosen appropriately, then f is the

stationary distribution distribution for this chain
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SIMPLE LINEAR LOGISTIC REGRESSION

logit(πi) = β0 + β1xi i = 1, . . . , 6

Covariate with integer values: xi = i

Sufficient statistics XTy=XTyobs = (s0, s1)
T

• s0 = Σyi for β0

• s1 = Σxiyi for β1

Let y′ = y + v such that Σy′i = s0 & Σxiy
′
i = s1
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Let y′ = y + v such that Σy′i = s0 & Σxiy
′
i = s1

xi mi yi vi y′i

1 20 1 −1 0

2 20 4 2 6

3 20 9 −1 8

4 20 13 0 13

5 20 18 0 18

6 20 20 0 20

thus maintaining the sufficient statistics
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PROPOSED METROPOLIS-HASTINGS ALGORITHM

• enumerate all integer v that satisfyXTv = 0 and

Σ|vi| ≤ r for some even r, typically 4, 6 or 8

• generate a v uniformly & generate integer d from

gD(d|v)∝ exp(γTZT{y+ dv})
n∏
i=1

 mi

yi + dvi

 (1)

• set y′ = y + dv, where 0 ≤ y′i ≤ mi for all i

• most vi are zero so (1) a product of at most r + 1

terms, so the support of d is typically small
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DOSE-RESPONSE DATA

log-dose mi yi xi

0.301 19 19 1

0.000 20 18 0

−0.301 19 19 −1

−0.602 21 14 −2

−0.903 19 15 −3

−1.208 20 4 −4 −4ε

−1.509 16 0 −5 −4ε

−1.807 19 0 −6 −ε
−2.108 40 0 −7 −ε
−2.710 81 2 −9 −ε
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DOSE-RESPONSE DATA

• taken from Bedrick and Hill (1990)

• tumorigenicity of benzepyrene in mice

• doses almost equally spaced on log-dose scale

• exact results available for comparison

Bedrick, EJ & Hill, JR (1990) Outlier tests for logistic

regression: A conditional approach Biometrika 77

815–827
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Test statistics & p-values for dose-response data

observed asymptotic estimated exact

value df p-value exact p-values p-value

L2 26.679 8 0.001 0.0064± 0.0008 0.006

X2 32.096 8 0.000 0.0116± 0.0009 0.013

• estimated p-values based on sample of one million

• approximate 99% CI used method of batch means

• exact p-values from Bedrick and Hill

• MCMC estimates in good agreement with the exact p-values
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IRREDUCIBILITY

How to choose v so that any y satisfying conditioning

constraints can be reached by the chain?

• results for special cases, e.g. equally-spaced

covariate

• Gröbner basis approach (Diaconis & Sturmfels, 1998)

¦ sufficient set of moves

¦ computationally demanding

How important is irreducibility in practice?
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GREYING OF HAIR AND MORTALITY

• 469 adult Mexicans scored on hair greyness in 1948:

1 - none, 2 - slight, 3 - moderate, 4 - general

• age groups: 17–24, 25–29,. . . , 70–74, 75+

• 65 distinct covariate patterns

• response: natural death between 1948 and 1969

Lasker, GW & Kaplan, B (1974) Graying of the hair and
mortality Social Biology 21 290–295
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males

greyness none slight moderate general

age yi mi yi mi yi mi yi mi

1 1 46 0 1

2 1 29

3 3 23 0 3

4 4 33 3 7

5 2 12 3 12 0 2

6 1 12 5 15 3 7 0 2

7 1 1 3 16 0 1 5 8

8 1 2 5 6 1 4 3 9

9 0 3 1 4 3 6 3 6

10 2 3 3 5

11 1 1 2 2 3 4

12 2 2 3 3
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females

greyness none slight moderate general

age yi mi yi mi yi mi yi mi

1 2 34

2 0 21 0 1

3 1 13

4 0 23 0 5 0 1

5 0 11 0 2 1 1 1 1

6 0 8 4 7 0 3

7 0 3 1 7 0 2 1 4

8 1 2 0 6 1 4 3 7

9 1 1 0 2 1 1

10 0 1 0 2 0 1

11 1 1 2 2

12 1 1 1 1
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GREYING OF HAIR AND MORTALITY . . .

• age: equally-spaced covariate (1 to 12)

• greyness score: equally-spaced covariate (1 to 4)

• estimated exact p-values suggest better fit than do

asymptotic p-values

• reject the SEX+AGE+GREY model at the 5% level

using the asymptotic p-value for L2, but not using the

estimated exact p-value
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GREYING OF HAIR AND MORTALITY . . .

Test statistics and p-values for grey hair data

observed asymptotic estimated

test statistic df p-value exact p-value

Goodness of fit of L2 = 87.80 62 0.0172 0.0487± 0.0059

SEX+AGE X2 = 85.81 62 0.0244 0.0518± 0.0054

Goodness of fit of L2 = 84.01 61 0.0270 0.0959± 0.0091

SEX+AGE+GREY X2 = 77.05 61 0.0806 0.0973± 0.0089
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TEST AGAINST NON-SATURATED ALTERNATIVE

To compare the two models

1. extract from the Markov chain for the SEX+AGE

model a sample of the sufficient statistic for the

greyness score parameter

2. estimate exact p-value by ranking observed value of

sufficient statistic,ZTyobs=235, among this sample

Against the one-sided alternative that hair greyness is

deleterious, p̂ = 0.0314± 0.0068
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RESIDUAL ANALYSIS FOR AGE + SEX MODEL

Standardized deviance residuals and p-values for grey hair data

covariate asymptotic estimated support

yi mi values residual p-value exact p-value points

0 3 M 9 0 −2.229 0.0258 0.0878 4

3 7 M 4 1 2.008 0.0446 0.0484 6

4 7 F 6 1 2.703 0.0068 0.0075 7

1 1 F 5 2 2.161 0.0306 0.0978 2

1 1 F 5 3 2.161 0.0306 0.1000 2
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RESIDUAL ANALYSIS FOR AGE + SEX MODEL

• p̂ calculated using the empirical distribution of the

residuals extracted from the MCMC sample used to

test goodness of fit

• no p̂ for the 65 residuals indicates that the lack of fit is

due to a small number of extreme cases

• asymptotic p-values closest to p̂ for the empirical

distributions with largest numbers of support points
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MONTE CARLO EXACT CONFIDENCE INTERVAL

Monte Carlo exact inference is based on a sample

generated from

f(y|XTy = XTyobs;γ) ∝ exp(γTZTy)
n∏
i=1

 mi

yi



For scalar γ, an exact p-value for Hγ is estimated using

a tail area of the empirical distribution ofZTy
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MONTE CARLO EXACT CI . . .

• lower (upper) end point of an exact (1− 2α) CI for γ

can be estimated by finding the value γ0 such that

the observed value ofZTy is the upper (lower)

α-quantile of the empirical distribution

• given a sample for γ = γ∗, the exact p-value under

Hγ : γ = γ0 can be estimated by weighting the

sample by exp{(γ0 − γ∗)ZTy}
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MONTE CARLO EXACT CI . . .

• in principle, a grid search for both end points of a CI

may be based on a single Monte Carlo sample

• a natural choice is γ∗ = 0, if a Monte Carlo test of

γ = 0 has already been performed

• alternatively, γ∗ = γ̂, the MLE, is a value which is

supported by the observed data
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EXACT CI FOR GREYNESS SCORE PARAMETER

• estimated exact 95% CI is

¦ (−0.015, 0.613) using γ∗ = 0

¦ (−0.010, 0.600) using γ∗ = γ̂ = 0.295

• show relatively little sensitivity to the choice of γ∗

• are similar to the asymptotic CI (−0.001, 0.592)



'

&

$

%

MULTINOMIAL LOGISTIC REGRESSION

• polytomous response with categories 0, . . . , K

• ith observation represented by the K + 1 counts

(yi0, yi1, . . . , yiK), i = 1, . . . , n,

with the total count mi =
∑K
k=0 yik, assumed fixed

• Y = (yik) is n×K matrix of responses, where k

runs from 1

• denote the K columns of Y by y1, . . . ,yK with

y0 = m− ∑K
k=1 yk wherem = (m1, . . . ,mn)

T
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MULTINOMIAL LOGISTIC REGRESSION

baseline-category multinomial logistic regression model,

with baseline category 0, is

log

(
πik
πi0

)
= xTi βk + zTi γk (2)

When the response is ordinal, it may be more

appropriate to express this model as the equivalent

adjacent-category model

log

(
πik
πi k−1

)
= xTi β

′
k + zTi γ

′
k (3)



'

&

$

%

Hirji, KF (1992) Computing exact distributions for

polytomous response data. JASA, 87 487-492

considered the baseline-category multinomial logistic

regression model

log

(
πik
πi0

)
= θk + xTi β + zTi γ (4)

and the adjacent-category model

log

(
πik
πi k−1

)
= θk + xTi β + zTi γ (5)

which are more parsimonious than (2) and (3) as the
regression parameters do not depend on the category
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MULTINOMIAL LOGISTIC REGRESSION

• binomial is a special case of the multinomial where

K = 1, y1 = y and y0 = m− y

• each proposed step of our binomial algorithm may be

thought of as addition of dv to y1 together with

subtraction of dv from y0
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MULTINOMIAL LOGISTIC REGRESSION

• K + 1 vectors of outcomes, y0,y0, . . . ,yK

• a proposal is obtained by selecting at random an

integer v such thatXTv = 0 and an integer vector

w = (w0, w1, . . . , wK)T

of length K + 1 such that 1TK+1w = 0,

where 1 is a vector of ones of the given dimension

• Y ′ = Y + dvwT
\0
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MULTINOMIAL LOGISTIC REGRESSION

• for computational convenience, the set of possiblew

is restricted to those for which
∑K
k=0 |wk| = 2

• the procedure is then equivalent to selecting at

random k1, k2 ∈ {0, 1, . . . , K}, k1 6= k2

¦ adding dv to yk1

¦ subtracting dv from yk2

• a simple extension of the binomial algorithm
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GOF test statistics and p-values for pregnancy outcome

Observed Asymptotic Estimated

statistic df p-value exact p-value∗

Model (4) L2 = 40.00 41 0.5150 0.8200± 0.0037

X2 = 39.83 41 0.5226 0.7478± 0.0063

Model (5) L2 = 42.27 41 0.4159 0.5293± 0.0170

X2 = 43.11 41 0.3811 0.3849± 0.0201

Model (2) L2 = 32.06 32 0.4638 0.5813± 0.0114

X2 = 32.18 32 0.4576 0.4633± 0.0128

∗ with approximate 99% confidence interval



'

&

$

%

DISCUSSION

• proposed MH algorithm

¦ intuitive and easy to construct

¦ extremely efficient for exact inference

¦ however, the resulting Markov chain is not

necessarily irreducible!!

• MCMC estimated p-values have been in good

agreement with the enumerated p-values
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DISCUSSION . . .

• Markov chains seem to mix well

• an indication of good connectivity is stable p̂

as the number of possible moves, determined by r,

is increased

• how important is irreducibility in practice?

• if chain not irreducible, conditioning is also on being in

a particular reduced component of the sample space


