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THE PROBLEM

Exact conditional inference

e tests, particularly goodness-of-fit (GOF) tests
e residual analysis

e confidence intervals

for binomial & multinomial logistic regression models
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BINOMIAL LOGISTIC REGRESSION
Y; ~ binomial(m;, ;) i=1,....n

Compare
My : logit(mr) = X3
with
M :logit(mr) = X3 + Z~

M is saturated (GOF test) if rank( X, Z) = n
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EXACT CONDITIONAL INFERENCE FOR ~y

Based on the distribution of (or some 1-dim function of)

ZTy‘XTy — XTyobs

a margin of
y‘XTy — XTyobs

f(successes ] sufficient statistics for 3)




/Conditional distribution of the vector of responses v, \

given X Ty, the vector of sufficient statistics for 3, is

n m;
Fyl X y=X"y,;v) < exp(y' Z'y) I]
Inference by

® enumeration

e (Markov Chain) Monte Carlo sampling

followed by marginalization
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CONDITIONAL DISTRIBUTION FOR INFERENCE

e uniform when m; = 1 for all 2
e GOF test for pure binary data is not sensible

e degenerate for continuous covariates, since only Yy ;.

satisfies the conditioning constraints

e not usually degenerate when covariate values are

Integer or evenly spaced
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METROPOLIS-HASTINGS SAMPLING

1. Given current value vy, generate a new value y’ from

some probability distribution ¢(y, y')

2. Accept ¢y’ as the next realization of the chain with

probability a(y, y'), where

a(y,y’) = min {f
f
otherwise, retain y

Provided ¢ is chosen appropriately, then f is the

Qtationary distribution distribution for this chain
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SIMPLE LINEAR LOGISTIC REGRESSION
logit(7;) = By + Bix; i=1,....6

Covariate with integer values: x; = 1

Sufficient statistics X' y=X"y, . = (s0,51)"

o 5o = Xy, for By

® S — ZZEZ?/@ for ﬂl

Let Yy’ = y + v such that Xy} = s¢ & Yy, = s
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/Let y' = y + v suchthat Xy = s¢ & Yy = \

1 20 1 -1 0
2 20 4 2 0
3 20 9 -1 8
8! 20 13 0 13
3 20 18 0 18

6 20 20 0 20

thus maintaining the sufficient statistics
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/PROPOSED METROPOLIS-HASTINGS ALGORITHM \

e enumerate all integer v that satisfy X v = 0 and
Y |v;| < r for some even 7, typically 4, 6 or 8
e generate a v uniformly & generate integer d from
T T u 1
gp(d|v)ocexp(y' Z" {y +dv})[] (1)
=1\ y; + d?}i

e sety’ =y + dv, where 0 <y < m; for all 4

e most v; are zero so (1) a product of at most r + 1

terms, so the support of d is typically small
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DOSE-RESPONSE DATA

log-dose m,; y; xT;

0.301 19 19 1

0.000 20 18 0
—-0.301 19 19 -1
—0.602 21 14 =2
—0.903 19 15 -3
—1.208 20 4 —4 —4e
—1.509 16 0 —5 —4e
—1.807 19 0 —6 —e
—2.108 40 0 =7 —e
—2.710 81 2 -9 —e




/

DOSE-RESPONSE DATA

e taken from Bedrick and Hill (1990)

e tumorigenicity of benzepyrene in mice

e doses almost equally spaced on log-dose scale

® exact results available for comparison

Bedrick, EJ & Hill, JR (1990) Outlier tests for logistic
regression. A conditional approach Biometrika 77
815—-827
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Test statistics & p-values for dose-response data

observed asymptotic estimated exact
value df p-value exact p-values p-value

L? 26.679 8 0.001 0.0064 £ 0.0008  0.006
X? 32096 8 0.000 0.0116 == 0.0009 0.013

e estimated p-values based on sample of one million
e approximate 99% CI used method of batch means
e exact p-values from Bedrick and Hill

e MCMC estimates in good agreement with the exact p-values
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IRREDUCIBILITY

How to choose v so that any Yy satisfying conditioning

constraints can be reached by the chain?

e results for special cases, e.g. equally-spaced

covariate

e Grobner basis approach (Diaconis & Sturmfels, 1998)
¢ sufficient set of moves

¢ computationally demanding

How important is irreducibility in practice? /
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GREYING OF HAIR AND MORTALITY

e 469 adult Mexicans scored on hair greyness in 1948:

1 - none, 2 - slight, 3 - moderate, 4 - general
® age groups: 17-24, 25-29,...,70-74, 75+
® 65 distinct covariate patterns

® response: natural death between 1948 and 1969

Lasker, GW & Kaplan, B (1974) Graying of the hair and
mortality Social Biology 21 290-295
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GREYING OF HAIR AND MORTALITY ...

e age: equally-spaced covariate (1 to 12)
® greyness score: equally-spaced covariate (1 to 4)

e estimated exact p-values suggest better fit than do

asymptotic p-values

e reject the SEX+AGE+GREY model at the 5% level

using the asymptotic p-value for L?, but not using the

K estimated exact p-value /
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GREYING OF HAIR AND MORTALITY ...

Test statistics and p-values for grey hair data

observed asymptotic estimated
test statistic df p-value exact p-value
Goodness of fitof | L? =87.80 62 0.0172 0.0487 4 0.0059
SEX+AGE X?=285.81 62 0.0244 0.0518 4= 0.0054
Goodness of fitof | L? =84.01 61 0.0270 0.0959 =+ 0.0091
SEX+AGE+GREY | X2 =77.05 61 0.0806 0.0973 £ 0.0089
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1. extract from the Markov

TEST AGAINST NON-SATURATED ALTERNATIVE

To compare the two models

model a sample of the sufficient statistic for the

greyness score parameter

2. estimate exact p-value by ranking observed value of

sufficient statistic, Z” y,,, = 235, among this sample

Against the one-sided alternative that hair greyness is

~

chain for the SEX+AGE

deleterious, p = 0.0314 =

N

- 0.0068
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RESIDUAL ANALYSIS FOR AGE + SEX MODEL

\

Standardized deviance residuals and p-values for grey hair data

covariate asymptotic estimated support

Yy; m; values residual p-value exact p-value points
0 3 M9 0 —2.229 0.0258 0.0878 4
7 M4 1 2.008 0.0446 0.0484 6
4 7 FO61 2.703 0.0068 0.0075 7
1 1 F O 2 2.161 0.0306 0.0978 2
1 1 F53 2.161 0.0306 0.1000 2
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RESIDUAL ANALYSIS FOR AGE + SEX MODEL

e D calculated using the empirical distribution of the
residuals extracted from the MCMC sample used to

test goodness of fit

e no p for the 65 residuals indicates that the lack of fit is

due to a small number of extreme cases

e asymptotic p-values closest to p for the empirical

distributions with largest numbers of support points
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MONTE CARLO EXACT CONFIDENCE INTERVAL

Monte Carlo exact inference is based on a sample

generated from

n m;
Fy| X 'y = X"y,7) xexp(y' Z'y) H1
= Yi

For scalar vy, an exact p-value for H., is estimated using

a tail area of the empirical distribution of ZTy
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MONTE CARLO EXACT CI ...

e |ower (upper) end point of an exact (1 — 204) Cl for vy

can be estimated by finding the value 70 such that
the observed value of ZTy is the upper (lower)

a-quantile of the empirical distribution

e given a sample for v = ~*, the exact p-value under

Hv: Y= 70 can be estimated by weighting the
sample by exp{ (7" — ) Z' y}
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MONTE CARLO EXACT CI ...

® in principle, a grid search for both end points of a CI

may be based on a single Monte Carlo sample

e a natural choice is v* = 0, if a Monte Carlo test of

~v = 0 has already been performed

e alternatively, v* = 7, the MLE, is a value which is

supported by the observed data
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EXACT Cl FOR GREYNESS SCORE PARAMETER

e estimated exact 95% Cl is
¢ (—0.015,0.613) using v* = 0
o (—0.010, 0.600) using v* = 7 = 0.295
e show relatively little sensitivity to the choice of v*

e are similar to the asymptotic Cl (—0.001, 0.592)
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MULTINOMIAL LOGISTIC REGRESSION

e polytomous response with categories 0O, . ..,

e :th observation represented by the /X + 1 counts

(yi()?yila' . 7y’iK)7 1= 17' ey T,
with the total count m; = Zﬁzo Yik, assumed fixed

e Y = (y;;) is n X K matrix of responses, where k

runs from 1
e denote the K columnsof Y by y,, ..., yx with
Yo = m — X3, yj, where m = (my, ..., my,)"
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MULTINOMIAL LOGISTIC REGRESSION

baseline-category multinomial logistic regression model,
with baseline category 0O, is
log () = ! B, + 21, @)
7040
When the response is ordinal, it may be more
appropriate to express this model as the equivalent
adjacent-category model

1og( >=w?62+2%2 3)
T k—1
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Hirji, KF (1992) Computing exact distributions for
polytomous response data. JASA, 87 487-492

considered the baseline-category multinomial logistic

regression model

T
log <k> — O+ a7 B+ 2T (4)
7040
and the adjacent-category model
T
log< i >:9k+wfﬂ+zf'y 5)
T k—1

which are more parsimonious than (2) and (3) as the
Kregression parameters do not depend on the category /
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MULTINOMIAL LOGISTIC REGRESSION

e binomial is a special case of the multinomial where

K=1ly =yady,=m—y

e each proposed step of our binomial algorithm may be
thought of as addition of dv to Yy, together with

subtraction of dv from y,,
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MULTINOMIAL LOGISTIC REGRESSION
e K + 1 vectors of outcomes, Yy, Yg, - - -, Yx

® a proposal is obtained by selecting at random an

Integer v such that XTv =0andan Integer vector

w = (wo,wl,...,wK)T

of length K + 1 such that 1}, ;w = 0,

where 1 is a vector of ones of the given dimension

oY =Y + de\TO
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MULTINOMIAL LOGISTIC REGRESSION

e for computational convenience, the set of possible w

is restricted to those for which Y1, |wy,| = 2

e the procedure is then equivalent to selecting at
random ki, ko € {0,1,..., K}, k1 # ko

¢ adding dv to y,.,

¢ subtracting dv from y;,

e a simple extension of the binomial algorithm
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/ GOF test statistics and p-values for pregnancy outcome \

-

Observed Asymptotic Estimated
statistic df p-value exact p-value™

Model (4) L?=40.00 41 05150 0.8200 % 0.0037

X?=39.83 41 0.5226 0.7478 4+ 0.0063
Model (5) L? =42.27 41 04159  0.5293 + 0.0170

X#=4311 41 03811  0.3849 + 0.0201
Model 2) L? =32.06 32 04638 0.5813+0.0114

X?=3218 32 04576  0.4633 +£0.0128
* with approximate 99% confidence interval
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DISCUSSION

e proposed MH algorithm
< Intuitive and easy to construct
o extremely efficient for exact inference
¢ however, the resulting Markov chain is not

necessarily irreducible!!

e MCMC estimated p-values have been in good

agreement with the enumerated p-values
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DISCUSSION ...

e Markov chains seem to mix well

e an indication of good connectivity is stable p
as the number of possible moves, determined by r,

IS Increased
e how important is irreducibility in practice?

e if chain notirreducible, conditioning is also on being in

a particular reduced component of the sample space
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