Markov Chain Monte Carlo Exact Inference for Binomial & Multinomial Logistic Regression Models

Jon Forster, Mac McDonald & Peter Smith

University of Southampton, UK

bigmac@soton.ac.uk

http://www.maths.soton.ac.uk/staff/JJForster/paper.html

THE PROBLEM

Exact conditional inference

- tests, particularly goodness-of-fit (GOF) tests
- residual analysis
- confidence intervals

for binomial & multinomial logistic regression models

$$Y_i \sim \text{binomial}(m_i, \pi_i)$$
 $i = 1, \dots, n$

Compare

$$M_0$$
: logit $(\boldsymbol{\pi}) = X \boldsymbol{eta}$

with

$$M_1: \operatorname{logit}(\boldsymbol{\pi}) = X\boldsymbol{\beta} + Z\boldsymbol{\gamma}$$

 M_1 is saturated (GOF test) if $\operatorname{rank}(X,Z) = n$

EXACT CONDITIONAL INFERENCE FOR γ

Based on the distribution of (or some 1-dim function of)

$$Z^T \boldsymbol{y} | X^T \boldsymbol{y} = X^T \boldsymbol{y}_{obs}$$

a margin of

$$\boldsymbol{y}|X^T\boldsymbol{y} = X^T\boldsymbol{y}_{obs}$$

f(successes | sufficient statistics for β)

Conditional distribution of the vector of responses y, given $X^T y$, the vector of sufficient statistics for β , is

$$f(oldsymbol{y}|oldsymbol{X}^Toldsymbol{y}=oldsymbol{X}^Toldsymbol{y}_{obs};oldsymbol{\gamma})\propto \exp(oldsymbol{\gamma}^Toldsymbol{Z}^Toldsymbol{y})\prod_{i=1}^n \left(egin{array}{c} m_i\ y_i\ y_i\end{array}
ight)$$

Inference by

enumeration

• (Markov Chain) Monte Carlo sampling

followed by marginalization

CONDITIONAL DISTRIBUTION FOR INFERENCE

- uniform when $m_i = 1$ for all i
- GOF test for pure binary data is not sensible
- degenerate for continuous covariates, since only y_{obs} satisfies the conditioning constraints
- not usually degenerate when covariate values are integer or evenly spaced

METROPOLIS-HASTINGS SAMPLING

- 1. Given current value ${m y}$, generate a new value ${m y}'$ from some probability distribution $q({m y}, {m y}')$
- 2. Accept ${m y}'$ as the next realization of the chain with probability $a({m y}, {m y}')$, where

$$a(\boldsymbol{y}, \boldsymbol{y}') = \min\left\{\frac{f(\boldsymbol{y}')q(\boldsymbol{y}', \boldsymbol{y})}{f(\boldsymbol{y})q(\boldsymbol{y}, \boldsymbol{y}')}, 1\right\}$$

otherwise, retain $oldsymbol{y}$

Provided q is chosen appropriately, then f is the stationary distribution distribution for this chain

SIMPLE LINEAR LOGISTIC REGRESSION

$$\operatorname{logit}(\pi_i) = \beta_0 + \beta_1 x_i \qquad i = 1, \dots, 6$$

Covariate with integer values: $x_i = i$

Sufficient statistics $\boldsymbol{X}^T \boldsymbol{y} = \boldsymbol{X}^T \boldsymbol{y}_{obs} = (s_0, s_1)^T$

•
$$s_0 = \Sigma y_i$$
 for β_0

•
$$s_1 = \Sigma x_i y_i$$
 for β_1

Let $\boldsymbol{y}' = \boldsymbol{y} + \boldsymbol{v}$ such that $\Sigma y'_i = s_0 \ \& \ \Sigma x_i y'_i = s_1$

x_i	m_i	71.			
		g_{i}	v_i	y'_i	
1	20	1	-1	0	
2	20	4	2	6	
3	20	9	-1	8	
4	20	13	0	13	
5	20	18	0	18	
6	20	20	0	20	
าus r	maintainin	g the su	ufficient	statistics	

PROPOSED METROPOLIS-HASTINGS ALGORITHM

- enumerate all integer m v that satisfy $m X^Tm v=m 0$ and $\Sigma |v_i| \leq r$ for some even r, typically 4, 6 or 8
- generate a \boldsymbol{v} uniformly & generate integer d from

$$g_D(d|\boldsymbol{v}) \propto \exp(\boldsymbol{\gamma}^T \boldsymbol{Z}^T \{\boldsymbol{y} + d\boldsymbol{v}\}) \prod_{i=1}^n \left(egin{array}{c} m_i \\ y_i + dv_i \end{array}
ight)$$
 (1)

- set $oldsymbol{y}' = oldsymbol{y} + doldsymbol{v}$, where $0 \leq y'_i \leq m_i$ for all i
- most v_i are zero so (1) a product of at most r + 1 terms, so the support of d is typically small

DOSE-RESPONSE DATA

log-dose	m_{i}	y_i	x_i	
0.301	19	19	1	
0.000	20	18	0	
-0.301	19	19	-1	
-0.602	21	14	-2	
-0.903	19	15	-3	
-1.208	20	4	-4	-4ϵ
-1.509	16	0	-5	-4ϵ
-1.807	19	0	-6	$-\epsilon$
-2.108	40	0	-7	$-\epsilon$
-2.710	81	2	-9	$-\epsilon$

DOSE-RESPONSE DATA

- taken from Bedrick and Hill (1990)
- tumorigenicity of benzepyrene in mice
- doses *almost* equally spaced on log-dose scale
- exact results available for comparison

Bedrick, EJ & Hill, JR (1990) Outlier tests for logistic regression: A conditional approach *Biometrika* **77** 815–827

Test statistics & p-values for dose-response data

	observed		asymptotic	estimated	exact
	value	df	p-value	exact p-values	p-value
L^2	26.679	8	0.001	0.0064 ± 0.0008	0.006
X^2	32.096	8	0.000	0.0116 ± 0.0009	0.013

- estimated p-values based on sample of one million
- approximate 99% CI used method of batch means
- exact p-values from Bedrick and Hill
- MCMC estimates in good agreement with the exact p-values

IRREDUCIBILITY

How to choose v so that any y satisfying conditioning constraints can be reached by the chain?

- results for special cases, e.g. equally-spaced covariate
- Gröbner basis approach (Diaconis & Sturmfels, 1998)
 - \diamond sufficient set of moves
 - ◊ computationally demanding

How important is irreducibility in practice?

GREYING OF HAIR AND MORTALITY

- 469 adult Mexicans scored on hair greyness in 1948:
 - 1 none, 2 slight, 3 moderate, 4 general
- age groups: 17–24, 25–29,..., 70–74, 75+
- 65 distinct covariate patterns
- response: natural death between 1948 and 1969

Lasker, GW & Kaplan, B (1974) Graying of the hair and mortality *Social Biology* **21** 290–295

	greyness	no	one	sli	ght	moo	derate	ger	neral
	age	y_i	m_i	y_i	m_i	y_i	m_i	y_i	m_i
	1	1	46	0	1				
	2	1	29						
	3	3	23	0	3				
	4	4	33	3	7				
nales	5	2	12	3	12	0	2		
iaics	6	1	12	5	15	3	7	0	2
	7	1	1	3	16	0	1	5	8
	8	1	2	5	6	1	4	3	9
	9	0	3	1	4	3	6	3	6
	10					2	3	3	5
	11			1	1	2	2	3	4
	12					2	2	3	3

	greyness	no	one	sli	ght	moo	derate	ger	neral
	age	y_i	m_{i}	y_i	m_i	y_i	m_i	y_i	m_i
	1	2	34						
	2	0	21	0	1				
	3	1	13						
	4	0	23	0	5	0	1		
females	5	0	11	0	2	1	1	1	1
ICITIAICS	6	0	8	4	7			0	3
	7	0	3	1	7	0	2	1	4
	8	1	2	0	6	1	4	3	7
	9	1	1	0	2			1	1
	10			0	1	0	2	0	1
	11			1	1			2	2
	12			1	1	1	1		

GREYING OF HAIR AND MORTALITY ... • age: equally-spaced covariate (1 to 12) • greyness score: equally-spaced covariate (1 to 4) • estimated exact p-values suggest better fit than do asymptotic p-values • reject the SEX+AGE+GREY model at the 5% level using the asymptotic p-value for L^2 , but not using the estimated exact p-value

GREYING OF HAIR AND MORTALITY ...

Test statistics and p-values for grey hair data

	observed		asymptotic	estimated
test	statistic	df	p-value	exact p-value
Goodness of fit of	$L^2 = 87.80$	62	0.0172	0.0487 ± 0.0059
SEX+AGE	$X^2 = 85.81$	62	0.0244	0.0518 ± 0.0054
Goodness of fit of	$L^2 = 84.01$	61	0.0270	0.0959 ± 0.0091
SEX+AGE+GREY	$X^2 = 77.05$	61	0.0806	0.0973 ± 0.0089

TEST AGAINST NON-SATURATED ALTERNATIVE

To compare the two models

- extract from the Markov chain for the SEX+AGE model a sample of the sufficient statistic for the greyness score parameter
- 2. estimate exact p-value by ranking observed value of sufficient statistic, $\boldsymbol{Z}^T \boldsymbol{y}_{obs} = 235$, among this sample

Against the one-sided alternative that hair greyness is deleterious, $\hat{p}=0.0314\pm0.0068$

RESIDUAL ANALYSIS FOR AGE + SEX MODEL

Standardized deviance residuals and p-values for grey hair data

		covariate		asymptotic	estimated	support
y_i (m_i	values	residual	p-value	exact p-value	points
0	3	M 9 0	-2.229	0.0258	0.0878	4
3	7	M 4 1	2.008	0.0446	0.0484	6
4	7	F 6 1	2.703	0.0068	0.0075	7
1	1	F $5\ 2$	2.161	0.0306	0.0978	2
1	1	F 5 3	2.161	0.0306	0.1000	2

RESIDUAL ANALYSIS FOR AGE + SEX MODEL

- \hat{p} calculated using the empirical distribution of the residuals extracted from the MCMC sample used to test goodness of fit
- no \hat{p} for the 65 residuals indicates that the lack of fit is due to a small number of extreme cases
- asymptotic p-values closest to \hat{p} for the empirical distributions with largest numbers of support points

MONTE CARLO EXACT CONFIDENCE INTERVAL

Monte Carlo exact inference is based on a sample generated from

$$f(oldsymbol{y}|oldsymbol{X}^Toldsymbol{y} = oldsymbol{X}^Toldsymbol{y}_{obs};oldsymbol{\gamma}) \propto \exp(oldsymbol{\gamma}^Toldsymbol{Z}^Toldsymbol{y}) \prod_{i=1}^n \left(egin{array}{c} m_i \ y_i \end{array}
ight)$$

For scalar γ , an exact p-value for H_{γ} is estimated using a tail area of the empirical distribution of $\boldsymbol{Z}^T \boldsymbol{y}$

MONTE CARLO EXACT CI...

- lower (upper) end point of an exact $(1 2\alpha)$ CI for γ can be estimated by finding the value γ^0 such that the observed value of $Z^T y$ is the upper (lower) α -quantile of the empirical distribution
- given a sample for $\gamma = \gamma^*$, the exact p-value under H_{γ} : $\gamma = \gamma^0$ can be estimated by weighting the sample by $\exp\{(\gamma^0 \gamma^*) Z^T y\}$

MONTE CARLO EXACT CI ...

- in principle, a grid search for both end points of a CI may be based on a single Monte Carlo sample
- a natural choice is $\gamma^*=0,$ if a Monte Carlo test of $\gamma=0$ has already been performed
- alternatively, $\gamma^* = \hat{\gamma}$, the MLE, is a value which is supported by the observed data

EXACT CI FOR GREYNESS SCORE PARAMETER

• estimated exact 95% CI is

 $\diamond~(-0.015, 0.613)~\mathrm{using}~\gamma^*=0$

 $\diamond \ (-0.010, 0.600) \text{ using } \gamma^* = \widehat{\gamma} = 0.295$

- ullet show relatively little sensitivity to the choice of γ^*
- are similar to the asymptotic CI (-0.001, 0.592)

- polytomous response with categories $0, \ldots, K$
- *i*th observation represented by the K + 1 counts $(y_{i0}, y_{i1}, \ldots, y_{iK}), i = 1, \ldots, n,$ with the total count $m_i = \sum_{k=0}^{K} y_{ik}$, assumed fixed
- $\mathbf{Y} = (y_{ik})$ is $n \times K$ matrix of responses, where k runs from 1
- denote the K columns of $m{Y}$ by $m{y}_1,\ldots,m{y}_K$ with $m{y}_0=m{m}-\sum_{k=1}^Km{y}_k$ where $m{m}=(m_1,\ldots,m_n)^T$

baseline-category multinomial logistic regression model, with baseline category 0, is

$$\log\left(\frac{\pi_{ik}}{\pi_{i0}}\right) = \boldsymbol{x}_i^T \boldsymbol{\beta}_k + \boldsymbol{z}_i^T \boldsymbol{\gamma}_k$$
(2)

When the response is ordinal, it may be more

appropriate to express this model as the equivalent

adjacent-category model

$$\log\left(\frac{\pi_{ik}}{\pi_{ik-1}}\right) = \boldsymbol{x}_i^T \boldsymbol{\beta}_k' + \boldsymbol{z}_i^T \boldsymbol{\gamma}_k'$$
(3)

Hirji, KF (1992) Computing exact distributions for polytomous response data. *JASA*, **87** 487-492

considered the baseline-category multinomial logistic regression model

$$\log\left(\frac{\pi_{ik}}{\pi_{i0}}\right) = \theta_k + \boldsymbol{x}_i^T \boldsymbol{\beta} + \boldsymbol{z}_i^T \boldsymbol{\gamma}$$
(4)

and the adjacent-category model

$$\log\left(\frac{\pi_{ik}}{\pi_{ik-1}}\right) = \theta_k + \boldsymbol{x}_i^T \boldsymbol{\beta} + \boldsymbol{z}_i^T \boldsymbol{\gamma}$$
 (5)

which are more parsimonious than (2) and (3) as the regression parameters do not depend on the category

- binomial is a special case of the multinomial where $K=1,\, {m y}_1={m y}$ and ${m y}_0={m m}-{m y}$
- each proposed step of our binomial algorithm may be thought of as addition of $d\boldsymbol{v}$ to \boldsymbol{y}_1 together with subtraction of $d\boldsymbol{v}$ from \boldsymbol{y}_0

- K+1 vectors of outcomes, $oldsymbol{y}_0, oldsymbol{y}_0, \dots, oldsymbol{y}_K$
- a proposal is obtained by selecting at random an integer m v such that $m X^Tm v=m 0$ and an integer vector

$$oldsymbol{w} = (w_0, w_1, \dots, w_K)^T$$

of length K + 1 such that $\mathbf{1}_{K+1}^T \boldsymbol{w} = 0$, where $\mathbf{1}$ is a vector of ones of the given dimension

•
$$\mathbf{Y}' = \mathbf{Y} + d\mathbf{v}\mathbf{w}_{\setminus 0}^T$$

- for computational convenience, the set of possible \boldsymbol{w} is restricted to those for which $\sum_{k=0}^{K} |w_k| = 2$
- the procedure is then equivalent to selecting at random $k_1, k_2 \in \{0, 1, \dots, K\}$, $k_1 \neq k_2$

 \diamond adding $doldsymbol{v}$ to $oldsymbol{y}_{k_1}$

 \diamond subtracting $doldsymbol{v}$ from $oldsymbol{y}_{k_2}$

• a simple extension of the binomial algorithm

GOF test statistics and p-values for pregnancy outcome

	Observed		Asymptotic	Estimated
	statistic	df	p-value	exact p-value*
Model (4)	$L^2 = 40.00$	41	0.5150	0.8200 ± 0.0037
	$X^2 = 39.83$	41	0.5226	0.7478 ± 0.0063
Model (5)	$L^2 = 42.27$	41	0.4159	0.5293 ± 0.0170
	$X^2 = 43.11$	41	0.3811	0.3849 ± 0.0201
Model (2)	$L^2 = 32.06$	32	0.4638	0.5813 ± 0.0114
	$X^2 = 32.18$	32	0.4576	0.4633 ± 0.0128

* with approximate 99% confidence interval

DISCUSSION

- proposed MH algorithm
 - ♦ intuitive and easy to construct
 - \diamond extremely efficient for exact inference
 - however, the resulting Markov chain is not necessarily irreducible!!
- MCMC estimated p-values have been in good agreement with the enumerated p-values

DISCUSSION ...

- Markov chains seem to mix well
- an indication of good connectivity is stable p
 as the number of possible moves, determined by r,
 is increased
- how important is irreducibility in practice?
- if chain *not* irreducible, conditioning is *also* on being in a particular reduced component of the sample space